7 Advanced Counting Techniques

7.1 Recurrence Relations

- 1. a <u>recurrence relation</u> for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of previous term(s) of the sequence
- 2. a recurrence relation together with initial condition(s) determine a recursive definition of the sequence
- 3. recurrence relations model compound interest problems, population increase/decrease problems, determining the moves in the Tower of Hanoi puzzle...

7.2 Solving Recurrence Relations

linear homogeneous recurrence relation of degree k with constant coefficients

- 1. this is a recurrence relation that is linear (each term on the right hand side has a_i^1 for all $i \leq n-1$, versus containing quadratic terms like a_i^2), homogeneous (each term on the right hand side has some a_i for some $i \leq n-1$, versus containing constants or terms without a_i), it has degree k (a_n is defined in terms of a_j , where a_j is not more than k steps away from a_n , i.e. $n-k \leq j \leq n$), and the coefficients of each a_i are constants
- 2. the characteristic equation is obtained by replacing a_n by r^n in the recurrence relation (and canceling by the lowest power of r in the characteristic equation, one can solve it for r)
- 3. solutions are of the form $a_n = r^n$, or linear combinations of the roots to power n
- 4. to solve a linear homogeneous recurrence relation find the characteristic equations and solve for the characteristic roots of the recurrence, and then use a linear combination of the roots together with the initial condition to find solutions (if there are repetitions in the roots, then use the monomial n^j , where $1 \leq j \leq$ the multiplicity of the root -1): Theorem: If the characteristic equation has t roots r_i ($1 \leq i \leq t$), each of multiplicity m_i ($\sum_{i=1}^t m_i = k$), then a sequence $\{a_n\}$ is a solution of the given recurrence relation if and only iff

$$a_n = (\sum_{j=0}^{m_1-1} \alpha_j n^j) r_1^n + (\sum_{j=0}^{m_2-1} \beta_j n^j) r_2^n + \dots$$

for n = 0, 1, 2, ..., where α_j, β_j are constants that you can find using the initial conditions.

nonlinear nonhomogeneous recurrence relation with constant coefficients

- 1. example: $a_n = 4a_{n-2} + 3n$, with $a_0 = 0, a_1 = 1$
- 2. a solution of a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n),$$

(where F(n) is a function of n) is the sum of a particular solution and a solution of the associated linear homogeneous recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$

- 3. there is no general method in finding a particular solution, however there are techniques that work for certain types of functions F(n):
 - if F(n) is a polynomial $b_t n^t + b_{t-1} n^{t-1} + b_1 n + b_0$, then a particular root will be a polynomial of the same degree t (see Example 10 and Homework problem #25)
 - if F(n) is an exponential s^n , then a particular root will be an exponential times a constant: $c \cdot s^n$ (see Example 11 and Homework problem #23)
 - if F(n) is a polynomial times and exponential, then the particular solution is a combination of the two (see Theorem 6)

7.5 Inclusion-Exclusion

1. The principle of Inclusion-Exclusion: Let A_1, A_2, \ldots, A_n be finite sets. Then

$$|A_1 \cup A_2 \cup \dots A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n+1} |A_1 \cap A_2 \cap \dots \cap A_n|.$$

2. if
$$n = 2$$
: $|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$ and if $n = 3$:

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_2 \cap A_3| - |A_1 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

7.6 Applications of Inclusion-Exclusion

- 1. if we're counting the number $N(P'_1, P'_2, \ldots, P'_n)$ of elements that <u>do not have</u> properties P_i $(1 \le i \le n)$ we can use the following: let A_i be the subset counting the elements that have the property P_i $(1 \le i \le n)$, and so the number of elements without any properties P_i is $N |A_1 \cup A_2 \cup \ldots A_n|$, where N is the total number of elements in the set (the value $|A_1 \cap A_2 \cap \ldots A_n|$ is denoted by $N(P_1, P_2, \ldots, P_n)$ and it represents the number of elements that have the properties P_i $(1 \le i \le n)$
- 2. The Sieve of Eratosthenes is used to find all the primes not exceeding a specified positive integer n: list all the natural numbers between 2 and n-1 (inclusive), and then keep the first prime number but delete its multiples, then keep the second prime number but delete its multiples, . . . up to the largest prime number that is less than or equal to n. To use the inclusion-exclusion principle: let P_1 be the statement that the first prime number divides n, P_2 be the statement that the second prime number divides n, . . . , P_k be the statement that the kth prime number divides n (where the last prime number, k, is at most \sqrt{n}). Then

$$N(P'_1P'_2...P'_k) = (n-1) - N(P_1) - N(P_2) - ... - N(P_k)$$

$$+ N(P_1P_2) + N(P_1P_3) + N(P_2P_3) + ... N(P_{k-1}P_k)$$

$$- N(P_1P_2P_3) - ... - N(P_{k-2}P_{k-1}P_k)$$

$$+ N(P_1P_2P_3P_4)...$$

3. The number of onto functions from a set with m elements to a set with n elements: if we let P_k denote the property that the value k is not in the range (i.e. there is no value x of the domain that gets mapped to k), then

$$N(P'_1P'_2...P'_k) = N - N(P_1) - N(P_2) - ... - N(P_k)$$

$$+ N(P_1P_2) + N(P_1P_3) + N(P_2P_3) + ... N(P_{k-1}P_k)$$

$$- N(P_1P_2P_3) - ... - N(P_{k-2}P_{k-1}P_k)$$

$$+ N(P_1P_2P_3P_4)...$$

$$= n^m - C(n, 1)(n-1)^m + C(n, 2)(n-2)^m - ... + (-1)^{n-1}C(n, n-1)1^m$$

4. a <u>derangement</u> is a permutation of n objects that leaves no objects in their original position (i.e. when permuting the elements, every element needs to change its position). The number of derangements of n elements is D_n (let P_i be the permutation that fixes element i $(1 \le i \le n)$, and count $D_n = N(P_1'P_2' \dots P_n')$ using the inclusion-exclusion principle))

$$D_n = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \binom{n}{3}(n-3)! + \dots + (-1)^n \binom{n}{n}(n-n)!$$

$$D_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}\right)$$